Internal
problem
ID
[6817]
Book
:
A
treatise
on
Differential
Equations
by
A.
R.
Forsyth.
6th
edition.
1929.
Macmillan
Co.
ltd.
New
York,
reprinted
1956
Section
:
Chapter
VI.
Note
I.
Integration
of
linear
equations
in
series
by
the
method
of
Frobenius.
page
243
Problem
number
:
Ex.
6(iii),
page
257
Date
solved
:
Sunday, March 30, 2025 at 11:23:36 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^3*(x^2+1)*diff(diff(diff(y(x),x),x),x)-(4*x^2+2)*x^2*diff(diff(y(x),x),x)+(10*x^2+4)*x*diff(y(x),x)-(12*x^2+4)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^3*(1+x^2)*D[y[x],{x,3}]-(2+4*x^2)*x^2*D[y[x],{x,2}]+(4+10*x^2)*x*D[y[x],x]-(4+12*x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), (x, 2)) - x - y(x) + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
Series solution not supported for ode of order > 2