Internal
problem
ID
[6784]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
19.
Linear
equations
with
variable
coefficients
(Misc.
types).
Supplemetary
problems.
Page
132
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 11:22:39 AM
CAS
classification
:
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]
ode:=3*x*(y(x)^2*diff(diff(diff(y(x),x),x),x)+6*y(x)*diff(y(x),x)*diff(diff(y(x),x),x)+2*diff(y(x),x)^3)-3*y(x)*(y(x)*diff(diff(y(x),x),x)+2*diff(y(x),x)^2) = -2/x; dsolve(ode,y(x), singsol=all);
ode=3*x*( y[x]^2* D[y[x],{x,3}]+6*y[x]*D[y[x],x]*D[y[x],{x,2}]+2*D[y[x],x]^3 )-3*y[x]* (y[x]*D[y[x],{x,2}]+2* D[y[x],x]^2 )==-2/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*(y(x)**2*Derivative(y(x), (x, 3)) + 6*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)**3) - (3*y(x)*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), x)**2)*y(x) + 2/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out