40.14.8 problem 29

Internal problem ID [6779]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary problems. Page 132
Problem number : 29
Date solved : Sunday, March 30, 2025 at 11:22:28 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y&=8 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 19
ode:=(2*x-3)*diff(diff(diff(y(x),x),x),x)-(6*x-7)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)-4*y(x) = 8; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2+c_1 x +c_2 \,{\mathrm e}^{x}+c_3 \,{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.236 (sec). Leaf size: 26
ode=(2*x-3)*D[y[x],{x,3}]-(6*x-7)*D[y[x],{x,2}]+4*x*D[y[x],x]-4*y[x]==8; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 x+c_2 e^x-c_3 e^{2 x}-2 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x) + (2*x - 3)*Derivative(y(x), (x, 3)) - (6*x - 7)*Derivative(y(x), (x, 2)) - 4*y(x) - 8,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x*(3*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 3))) + 4*y(x) - 7*Derivative(y(x), (x, 2)) + 3*Derivative(y(x), (x, 3)) + 8)/(4*x) cannot be solved by the factorable group method