Internal
problem
ID
[6753]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
17.
Linear
equations
with
variable
coefficients
(Cauchy
and
Legndre).
Supplemetary
problems.
Page
110
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 11:21:29 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=(1+x)^2*diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)-y(x) = ln(1+x)^2+x-1; dsolve(ode,y(x), singsol=all);
ode=(x+1)^2*D[y[x],{x,2}]+(x+1)*D[y[x],x]-y[x]==(Log[x+1])^2+x-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + (x + 1)**2*Derivative(y(x), (x, 2)) + (x + 1)*Derivative(y(x), x) - y(x) - log(x + 1)**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), (x, 2)) + x + y(x) + log(x + 1)**2 - Derivative(y(x), (x, 2)) - 1)/(x + 1) cannot be solved by the factorable group method