40.12.3 problem 8

Internal problem ID [6751]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 17. Linear equations with variable coefficients (Cauchy and Legndre). Supplemetary problems. Page 110
Problem number : 8
Date solved : Sunday, March 30, 2025 at 11:21:27 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }&=x +\sin \left (\ln \left (x \right )\right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 40
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x) = x+sin(ln(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -c_1 \ln \left (x \right )+\ln \left (x \right ) x +c_2 x +c_3 -x +\frac {\tan \left (\frac {\ln \left (x \right )}{2}\right )+1}{1+\tan \left (\frac {\ln \left (x \right )}{2}\right )^{2}} \]
Mathematica. Time used: 0.172 (sec). Leaf size: 36
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]==x+Sin[Log[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} (\sin (\log (x))+\cos (\log (x))+2 ((-1+c_3) x+(x-c_1) \log (x)+c_2)) \]
Sympy. Time used: 0.369 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - x - sin(log(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} \log {\left (x \right )} + x \log {\left (x \right )} + \frac {\sqrt {2} \sin {\left (\log {\left (x \right )} + \frac {\pi }{4} \right )}}{2} \]