Internal
problem
ID
[6733]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
15.
Linear
equations
with
constant
coefficients
(Variation
of
parameters).
Supplemetary
problems.
Page
98
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 11:20:56 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+y(x) = -2*sin(x)+4*cos(x)*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==-2*Sin[x]+4*x*Cos[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*cos(x) + y(x) + 2*sin(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)