40.8.1 problem 16

Internal problem ID [6701]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary problems. Page 86
Problem number : 16
Date solved : Sunday, March 30, 2025 at 11:20:09 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)-15*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{8 x}+c_2 \right ) {\mathrm e}^{-5 x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+2*D[y[x],x]-15*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-5 x} \left (c_2 e^{8 x}+c_1\right ) \]
Sympy. Time used: 0.200 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-15*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 5 x} + C_{2} e^{3 x} \]