40.7.1 problem 10

Internal problem ID [6691]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 12. Linear equations of order n. Supplemetary problems. Page 81
Problem number : 10
Date solved : Sunday, March 30, 2025 at 11:19:52 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{5 x}+c_2 \right ) {\mathrm e}^{-3 x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x} \left (c_2 e^{5 x}+c_1\right ) \]
Sympy. Time used: 0.169 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{2 x} \]