40.6.3 problem 12

Internal problem ID [6683]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74
Problem number : 12
Date solved : Sunday, March 30, 2025 at 11:18:10 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }+4 x&=0 \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 30
ode:=x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 x \\ y &= 2 x \\ y &= \frac {4 c_1^{2}+x^{2}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.288 (sec). Leaf size: 43
ode=x*D[y[x],x]^2-2*y[x]*D[y[x],x]+4*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -2 x \cosh (-\log (x)+c_1) \\ y(x)\to -2 x \cosh (\log (x)+c_1) \\ y(x)\to -2 x \\ y(x)\to 2 x \\ \end{align*}
Sympy. Time used: 2.645 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + 4*x - 2*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 2 x^{2} e^{- C_{1}} + \frac {e^{C_{1}}}{2} \]