Internal
problem
ID
[6683]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
10.
Singular
solutions,
Extraneous
loci.
Supplemetary
problems.
Page
74
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 11:18:10 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]^2-2*y[x]*D[y[x],x]+4*x==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x)**2 + 4*x - 2*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)