40.5.1 problem 17

Internal problem ID [6666]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65
Problem number : 17
Date solved : Sunday, March 30, 2025 at 11:15:36 AM
CAS classification : [_separable]

\begin{align*} x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x^2*diff(y(x),x)^2+x*y(x)*diff(y(x),x)-6*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 \,x^{2} \\ y &= \frac {c_1}{x^{3}} \\ \end{align*}
Mathematica. Time used: 0.054 (sec). Leaf size: 26
ode=x^2*(D[y[x],x])^2+x*y[x]*D[y[x],x]-6*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1}{x^3} \\ y(x)\to c_1 x^2 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.210 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 + x*y(x)*Derivative(y(x), x) - 6*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} x^{2}, \ y{\left (x \right )} = \frac {C_{1}}{x^{3}}\right ] \]