40.4.22 problem 23 (b)

Internal problem ID [6662]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39
Problem number : 23 (b)
Date solved : Sunday, March 30, 2025 at 11:15:23 AM
CAS classification : [_rational]

\begin{align*} 4 x^{2} y y^{\prime }&=3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \end{align*}

Maple. Time used: 0.207 (sec). Leaf size: 175
ode:=4*x^2*y(x)*diff(y(x),x) = 3*x*(3*y(x)^2+2)+2*(3*y(x)^2+2)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {\frac {-18 c_1 \,x^{8}-6 \sqrt {-3 \left (c_1 \,x^{8}-\frac {1}{3}\right ) c_1 \,x^{9}}+6}{3 c_1 \,x^{8}-1}}}{3} \\ y &= \frac {\sqrt {\frac {-18 c_1 \,x^{8}-6 \sqrt {-3 \left (c_1 \,x^{8}-\frac {1}{3}\right ) c_1 \,x^{9}}+6}{3 c_1 \,x^{8}-1}}}{3} \\ y &= -\frac {\sqrt {6}\, \sqrt {\frac {-3 c_1 \,x^{8}+\sqrt {-3 \left (c_1 \,x^{8}-\frac {1}{3}\right ) c_1 \,x^{9}}+1}{3 c_1 \,x^{8}-1}}}{3} \\ y &= \frac {\sqrt {6}\, \sqrt {\frac {-3 c_1 \,x^{8}+\sqrt {-3 \left (c_1 \,x^{8}-\frac {1}{3}\right ) c_1 \,x^{9}}+1}{3 c_1 \,x^{8}-1}}}{3} \\ \end{align*}
Mathematica. Time used: 22.093 (sec). Leaf size: 277
ode=4*x^2*y[x]*D[y[x],x]==3*x*(3*y[x]^2+2)+2*(3*y[x]^2+2)^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{3} \sqrt {2} \sqrt {-\frac {3 x^8+\sqrt {3} \sqrt {-x^9 \left (x^8+72 c_1\right )}+216 c_1}{x^8+72 c_1}} \\ y(x)\to \frac {1}{3} \sqrt {2} \sqrt {-\frac {3 x^8+\sqrt {3} \sqrt {-x^9 \left (x^8+72 c_1\right )}+216 c_1}{x^8+72 c_1}} \\ y(x)\to -\frac {1}{3} \sqrt {2} \sqrt {\frac {-3 x^8+\sqrt {3} \sqrt {-x^9 \left (x^8+72 c_1\right )}-216 c_1}{x^8+72 c_1}} \\ y(x)\to \frac {1}{3} \sqrt {2} \sqrt {\frac {-3 x^8+\sqrt {3} \sqrt {-x^9 \left (x^8+72 c_1\right )}-216 c_1}{x^8+72 c_1}} \\ y(x)\to -i \sqrt {\frac {2}{3}} \\ y(x)\to i \sqrt {\frac {2}{3}} \\ \end{align*}
Sympy. Time used: 14.755 (sec). Leaf size: 194
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*y(x)*Derivative(y(x), x) - 3*x*(3*y(x)**2 + 2) - 2*(3*y(x)**2 + 2)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- \frac {48 C_{1} - 3 x^{8} - \sqrt {3} \sqrt {x^{9} \left (16 C_{1} - x^{8}\right )}}{16 C_{1} - x^{8}}}}{3}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- \frac {48 C_{1} - 3 x^{8} - \sqrt {3} \sqrt {x^{9} \left (16 C_{1} - x^{8}\right )}}{16 C_{1} - x^{8}}}}{3}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- \frac {48 C_{1} - 3 x^{8} + \sqrt {3} \sqrt {x^{9} \left (16 C_{1} - x^{8}\right )}}{16 C_{1} - x^{8}}}}{3}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- \frac {48 C_{1} - 3 x^{8} + \sqrt {3} \sqrt {x^{9} \left (16 C_{1} - x^{8}\right )}}{16 C_{1} - x^{8}}}}{3}\right ] \]