40.4.12 problem 19 (m)

Internal problem ID [6652]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39
Problem number : 19 (m)
Date solved : Sunday, March 30, 2025 at 11:13:43 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.144 (sec). Leaf size: 27
ode:=(x-x*(x^2-y(x)^2)^(1/2))*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y-\arctan \left (\frac {y}{\sqrt {x^{2}-y^{2}}}\right )-c_1 = 0 \]
Mathematica. Time used: 0.492 (sec). Leaf size: 29
ode=(x-x*Sqrt[x^2-y[x]^2])*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\arctan \left (\frac {\sqrt {x^2-y(x)^2}}{y(x)}\right )+y(x)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*sqrt(x**2 - y(x)**2) + x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out