40.4.8 problem 19 (i)

Internal problem ID [6648]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39
Problem number : 19 (i)
Date solved : Sunday, March 30, 2025 at 11:13:31 AM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} x y^{\prime }+y-x^{3} y^{6}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 254
ode:=x*diff(y(x),x)+y(x)-x^3*y(x)^6 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{2 c_1 \,x^{3}+5 x} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}+\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}-\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}-\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}+\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ \end{align*}
Mathematica. Time used: 1.089 (sec). Leaf size: 141
ode=x*D[y[x],x]+(y[x]-x^3*y[x]^6)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [5]{-2}}{\sqrt [5]{x^3 \left (5+2 c_1 x^2\right )}} \\ y(x)\to \frac {1}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{2/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to -\frac {(-1)^{3/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{4/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 15.295 (sec). Leaf size: 228
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*y(x)**6 + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [5]{2} \sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} + \sqrt [5]{2} \sqrt {5} - 2^{\frac {7}{10}} i \sqrt {\sqrt {5} + 5}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} + \sqrt [5]{2} \sqrt {5} + 2^{\frac {7}{10}} i \sqrt {\sqrt {5} + 5}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} \sqrt {5} - \sqrt [5]{2} - 2^{\frac {7}{10}} i \sqrt {5 - \sqrt {5}}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} \sqrt {5} - \sqrt [5]{2} + 2^{\frac {7}{10}} i \sqrt {5 - \sqrt {5}}\right )}{4}\right ] \]