Internal
problem
ID
[6626]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
5.
Equations
of
first
order
and
first
degree
(Exact
equations).
Supplemetary
problems.
Page
33
Problem
number
:
25
(g)
Date
solved
:
Sunday, March 30, 2025 at 11:12:46 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=x*y(x)-2*y(x)^2-(x^2-3*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*y[x]-2*y[x]^2)-(x^2-3*x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) - (x**2 - 3*x*y(x))*Derivative(y(x), x) - 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)