40.3.17 problem 25 (b)

Internal problem ID [6621]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 25 (b)
Date solved : Sunday, March 30, 2025 at 11:12:40 AM
CAS classification : [_linear]

\begin{align*} 2 y-3 x +x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=2*y(x)-3*x+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x +\frac {c_1}{x^{2}} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 13
ode=(2*y[x]-3*x)+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x+\frac {c_1}{x^2} \]
Sympy. Time used: 0.166 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 3*x + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{2}} + x \]