40.3.10 problem 23 (p)

Internal problem ID [6614]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 23 (p)
Date solved : Sunday, March 30, 2025 at 11:12:20 AM
CAS classification : [_exact]

\begin{align*} 2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 41
ode:=2*x*y(x)*exp(x^2*y(x))+y(x)^2*exp(x*y(x)^2)+1+(x^2*exp(x^2*y(x))+2*x*y(x)*exp(x*y(x)^2)-2*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} x^{4}+{\mathrm e}^{\frac {\textit {\_Z}^{2}}{x^{3}}} x^{4}+c_1 \,x^{4}+x^{5}-\textit {\_Z}^{2}\right )}{x^{2}} \]
Mathematica. Time used: 0.432 (sec). Leaf size: 30
ode=(2*x*y[x]*Exp[x^2*y[x]]+ y[x]^2*Exp[x*y[x]^2]+1)+(x^2*Exp[x^2*y[x]]+ 2*x*y[x]*Exp[x*y[x]^2]-2*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [e^{x^2 y(x)}-y(x)^2+e^{x y(x)^2}+x=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)*exp(x**2*y(x)) + (x**2*exp(x**2*y(x)) + 2*x*y(x)*exp(x*y(x)**2) - 2*y(x))*Derivative(y(x), x) + y(x)**2*exp(x*y(x)**2) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out