40.3.7 problem 23 (k)

Internal problem ID [6611]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 23 (k)
Date solved : Sunday, March 30, 2025 at 11:12:16 AM
CAS classification : [_exact]

\begin{align*} x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 22
ode:=x*(x^2+y(x)^2)^(1/2)-y(x)+(y(x)*(x^2+y(x)^2)^(1/2)-x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (x^{2}+y^{2}\right )^{{3}/{2}}}{3}-x y+c_1 = 0 \]
Mathematica. Time used: 27.32 (sec). Leaf size: 319
ode=(x*Sqrt[x^2+y[x]^2]-y[x])+(y[x]*Sqrt[x^2+y[x]^2]-x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,1\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,2\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,3\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,4\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,5\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^6+3 \text {$\#$1}^4 x^2+\text {$\#$1}^2 \left (3 x^4-9 x^2\right )-18 \text {$\#$1} c_1 x+x^6-9 c_1{}^2\&,6\right ] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*sqrt(x**2 + y(x)**2) + (-x + sqrt(x**2 + y(x)**2)*y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out