Internal
problem
ID
[6600]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
4.
Equations
of
first
order
and
first
degree
(Variable
separable).
Supplemetary
problems.
Page
22
Problem
number
:
47
Date
solved
:
Sunday, March 30, 2025 at 11:11:40 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=x^2+y(x)^2+x*y(x)*diff(y(x),x) = 0; ic:=y(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2+y[x]^2)+x*y[x]*D[y[x],x]==0; ic={y[1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + x*y(x)*Derivative(y(x), x) + y(x)**2,0) ics = {y(1): -1} dsolve(ode,func=y(x),ics=ics)