40.2.8 problem 31

Internal problem ID [6586]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 31
Date solved : Sunday, March 30, 2025 at 11:10:39 AM
CAS classification : [[_homogeneous, `class G`], _dAlembert]

\begin{align*} y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.050 (sec). Leaf size: 60
ode:=y(x)*(x^2+y(x)^2)^(1/2)-x*(x+(x^2+y(x)^2)^(1/2))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {x \ln \left (2\right )-\ln \left (y\right ) x +x \ln \left (\frac {x \left (x +\sqrt {x^{2}+y^{2}}\right )}{y}\right )-\ln \left (x \right ) x -c_1 x -\sqrt {x^{2}+y^{2}}}{x} = 0 \]
Mathematica. Time used: 0.339 (sec). Leaf size: 43
ode=y[x]*Sqrt[x^2+y[x]^2]-x*(x+Sqrt[x^2+y[x]^2])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\sqrt {\frac {y(x)^2}{x^2}+1}+\log \left (\sqrt {\frac {y(x)^2}{x^2}+1}-1\right )=-\log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(x + sqrt(x**2 + y(x)**2))*Derivative(y(x), x) + sqrt(x**2 + y(x)**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational