39.6.10 problem Problem 27.48

Internal problem ID [6568]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 27. Power series solutions of linear DE with variable coefficients. Supplementary Problems. page 274
Problem number : Problem 27.48
Date solved : Sunday, March 30, 2025 at 11:07:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 x y^{\prime }+x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=-1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
Order:=6; 
ode:=diff(diff(y(x),x),x)-2*x*diff(y(x),x)+x^2*y(x) = 0; 
ic:=y(0) = 1, D(y)(0) = -1; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = 1-x -\frac {1}{3} x^{3}-\frac {1}{12} x^{4}-\frac {1}{20} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 29
ode=D[y[x],{x,2}]-2*x*D[y[x],x]+x^2*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==-1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^5}{20}-\frac {x^4}{12}-\frac {x^3}{3}-x+1 \]
Sympy. Time used: 0.782 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x) - 2*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = \frac {3 x^{5} r{\left (3 \right )}}{10} + C_{2} \left (- \frac {x^{6}}{45} - \frac {x^{4}}{12} + 1\right ) + C_{1} x \left (1 - \frac {x^{4}}{20}\right ) + O\left (x^{6}\right ) \]