37.3.6 problem 10.4.8 (f)

Internal problem ID [6412]
Book : Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section : Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Second order and Homogeneous. page 318
Problem number : 10.4.8 (f)
Date solved : Sunday, March 30, 2025 at 10:54:59 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x y^{\prime \prime }-y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 36
ode:=2*x*diff(diff(y(x),x),x)-diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (2 \sqrt {x}\, c_1 +c_2 \right ) \cos \left (2 \sqrt {x}\right )-\sin \left (2 \sqrt {x}\right ) \left (-2 c_2 \sqrt {x}+c_1 \right ) \]
Mathematica. Time used: 0.188 (sec). Leaf size: 59
ode=2*x*D[y[x],{x,2}]-D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{2 i \sqrt {x}} \left (2 \sqrt {x}+i\right )+\frac {1}{8} c_2 e^{-2 i \sqrt {x}} \left (1+2 i \sqrt {x}\right ) \]
Sympy. Time used: 0.184 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), (x, 2)) + 2*y(x) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{\frac {3}{4}} \left (C_{1} J_{\frac {3}{2}}\left (2 \sqrt {x}\right ) + C_{2} Y_{\frac {3}{2}}\left (2 \sqrt {x}\right )\right ) \]