Internal
problem
ID
[6386]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
8,
Series
solutions
of
differential
equations.
Section
8.4.
page
449
Problem
number
:
28
Date
solved
:
Sunday, March 30, 2025 at 10:54:07 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-y(x)*sin(x) = cos(x); dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-Sin[x]*y[x]==Cos[x]; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*sin(x) - cos(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -y(x)*sin(x) - cos(x) + Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular