Internal
problem
ID
[6255]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
12,
Series
Solutions
of
Differential
Equations.
Section
1.
Miscellaneous
problems.
page
564
Problem
number
:
10,
using
elementary
method
Date
solved
:
Sunday, March 30, 2025 at 10:44:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(4*x^2-2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*x*D[y[x],x]+(4*x^2-2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*Derivative(y(x), x) + (4*x**2 - 2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False