35.9.7 problem 4, using series method

Internal problem ID [6242]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564
Problem number : 4, using series method
Date solved : Sunday, March 30, 2025 at 10:44:29 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=-4 y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 39
Order:=6; 
ode:=diff(diff(y(x),x),x) = -4*y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-2 x^{2}+\frac {2}{3} x^{4}\right ) y \left (0\right )+\left (x -\frac {2}{3} x^{3}+\frac {2}{15} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 40
ode=D[y[x],{x,2}]==-4*y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {2 x^5}{15}-\frac {2 x^3}{3}+x\right )+c_1 \left (\frac {2 x^4}{3}-2 x^2+1\right ) \]
Sympy. Time used: 0.670 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {2 x^{4}}{3} - 2 x^{2} + 1\right ) + C_{1} x \left (1 - \frac {2 x^{2}}{3}\right ) + O\left (x^{6}\right ) \]