35.8.25 problem 25

Internal problem ID [6232]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems. page 466
Problem number : 25
Date solved : Sunday, March 30, 2025 at 10:44:09 AM
CAS classification : [_separable]

\begin{align*} 3 x^{2} y+x^{3} y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2 \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 9
ode:=3*x^2*y(x)+x^3*diff(y(x),x) = 0; 
ic:=y(1) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {2}{x^{3}} \]
Mathematica. Time used: 0.039 (sec). Leaf size: 10
ode=3*x^2*y[x]+x^3*D[y[x],x]==0; 
ic={y[1]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2}{x^3} \]
Sympy. Time used: 0.128 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) + 3*x**2*y(x),0) 
ics = {y(1): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2}{x^{3}} \]