Internal
problem
ID
[6205]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
7.
Other
second-Order
equations.
page
435
Problem
number
:
28
Date
solved
:
Sunday, March 30, 2025 at 10:43:03 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=3*x*diff(diff(y(x),x),x)-2*(3*x-1)*diff(y(x),x)+(3*x-2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=3*x*D[y[x],{x,2}]-2*(3*x-1)*D[y[x],x]+(3*x-2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*Derivative(y(x), (x, 2)) + (3*x - 2)*y(x) - (6*x - 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False