35.6.1 problem 1

Internal problem ID [6151]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422
Problem number : 1
Date solved : Sunday, March 30, 2025 at 10:41:22 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=10 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x) = 10; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{4 x} c_1}{4}-\frac {5 x}{2}+c_2 \]
Mathematica. Time used: 0.014 (sec). Leaf size: 24
ode=D[y[x],{x,2}]-4*D[y[x],x]==10; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {5 x}{2}+\frac {1}{4} c_1 e^{4 x}+c_2 \]
Sympy. Time used: 0.157 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 10,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{4 x} - \frac {5 x}{2} \]