Internal
problem
ID
[6128]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
4.
OTHER
METHODS
FOR
FIRST-ORDER
EQUATIONS.
page
406
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 10:40:36 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(x)^2-x*y(x)+(x^2+x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^2-x*y[x])+(x^2+x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + (x**2 + x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)