Internal
problem
ID
[6110]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
3.
Linear
First-Order
Equations.
page
403
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 10:39:03 AM
CAS
classification
:
[_linear]
ode:=diff(y(x),x)+y(x)/(x^2+1)^(1/2) = 1/(x+(x^2+1)^(1/2)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+y[x]/Sqrt[x^2+1]==1/(x+Sqrt[x^2+1]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + y(x)/sqrt(x**2 + 1) - 1/(x + sqrt(x**2 + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out