Internal
problem
ID
[6086]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
IX,
Special
forms
of
differential
equations.
Examples
XVII.
page
247
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 10:38:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-25/4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-25/4)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 25/4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)