34.4.12 problem 12

Internal problem ID [6066]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XV. page 194
Problem number : 12
Date solved : Sunday, March 30, 2025 at 10:37:37 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{3} y^{\prime \prime }+y&=x^{{3}/{2}} \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=6; 
ode:=x^3*diff(diff(y(x),x),x)+y(x) = x^(3/2); 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.366 (sec). Leaf size: 740
ode=x^3*D[y[x],{x,2}]+y[x]==x^(3/2); 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**(3/2) + x**3*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE -x**(3/2) + x**3*Derivative(y(x), (x, 2)) + y(x) does not match hint 2nd_power_series_regular