34.3.6 problem 7

Internal problem ID [6045]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XIV. page 177
Problem number : 7
Date solved : Sunday, March 30, 2025 at 10:37:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=6; 
ode:=x^4*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 49
ode=x^4*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_1 \left (1-x^2\right )}{x}+c_2 e^{\frac {1}{2 x^2}} \left (420 x^6+45 x^4+6 x^2+1\right ) x^4 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x**4*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x) does not match hint 2nd_power_series_regular