34.2.5 problem 5

Internal problem ID [6035]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter 2, Equations of the first order and degree. page 20
Problem number : 5
Date solved : Sunday, March 30, 2025 at 10:36:36 AM
CAS classification : [_separable]

\begin{align*} \frac {x}{1+y}&=\frac {y y^{\prime }}{1+x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 494
ode:=x/(1+y(x)) = y(x)/(1+x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {4 x^{6}+12 x^{5}+24 c_1 \,x^{3}+9 x^{4}+36 c_1 \,x^{2}-2 x^{3}+36 c_1^{2}-3 x^{2}-6 c_1}\right )^{{1}/{3}}}{2}+\frac {1}{2 \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {4 x^{6}+12 x^{5}+24 c_1 \,x^{3}+9 x^{4}+36 c_1 \,x^{2}-2 x^{3}+36 c_1^{2}-3 x^{2}-6 c_1}\right )^{{1}/{3}}}-\frac {1}{2} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{2}/{3}}-i \sqrt {3}+2 \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{1}/{3}}+1}{4 \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{2}/{3}}-i \sqrt {3}-2 \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{1}/{3}}-1}{4 \left (-1+4 x^{3}+6 x^{2}+12 c_1 +2 \sqrt {\left (2 x^{3}+3 x^{2}+6 c_1 \right ) \left (2 x^{3}+3 x^{2}+6 c_1 -1\right )}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 4.402 (sec). Leaf size: 346
ode=x/(1+y[x])==y[x]/(1+x)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (\sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}+\frac {1}{\sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}}-1\right ) \\ y(x)\to \frac {1}{8} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}+\frac {-2-2 i \sqrt {3}}{\sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}}-4\right ) \\ y(x)\to \frac {1}{8} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}+\frac {2 i \left (\sqrt {3}+i\right )}{\sqrt [3]{4 x^3+6 x^2+\sqrt {-1+\left (4 x^3+6 x^2-1+12 c_1\right ){}^2}-1+12 c_1}}-4\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x/(y(x) + 1) - y(x)*Derivative(y(x), x)/(x + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division