32.6.39 problem Exercise 12.39, page 103

Internal problem ID [5904]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.39, page 103
Date solved : Sunday, March 30, 2025 at 10:24:48 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`], [_Abel, `2nd type`, `class C`]]

\begin{align*} \left (x^{2}-y\right ) y^{\prime }+x&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 23
ode:=(x^2-y(x))*diff(y(x),x)+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2}+\frac {\operatorname {LambertW}\left (4 c_1 \,{\mathrm e}^{-2 x^{2}-1}\right )}{2}+\frac {1}{2} \]
Mathematica. Time used: 4.122 (sec). Leaf size: 40
ode=(x^2-y[x])*D[y[x],x]+x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x^2+\frac {1}{2} \left (1+W\left (-e^{-2 x^2-1+c_1}\right )\right ) \\ y(x)\to x^2+\frac {1}{2} \\ \end{align*}
Sympy. Time used: 0.881 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (x**2 - y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} + \frac {W\left (C_{1} e^{- 2 x^{2} - 1}\right )}{2} + \frac {1}{2} \]