Internal
problem
ID
[5898]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.33,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:24:28 AM
CAS
classification
:
[_exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=(x^2*y(x)-1)*diff(y(x),x)+x*y(x)^2-1 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2*y[x]-1)*D[y[x],x]+x*y[x]^2-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (x**2*y(x) - 1)*Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out