32.6.26 problem Exercise 12.26, page 103

Internal problem ID [5891]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.26, page 103
Date solved : Sunday, March 30, 2025 at 10:24:05 AM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=x^3*diff(y(x),x)-y(x)^2-x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{c_1 x +1} \]
Mathematica. Time used: 0.157 (sec). Leaf size: 22
ode=x^3*D[y[x],x]-y[x]^2-x^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x^2}{1+c_1 x} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.184 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) - x**2*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{C_{1} x + 1} \]