Internal
problem
ID
[5891]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.26,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:24:05 AM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Bernoulli]
ode:=x^3*diff(y(x),x)-y(x)^2-x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],x]-y[x]^2-x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), x) - x**2*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)