Internal
problem
ID
[5879]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.14,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:22:34 AM
CAS
classification
:
[_Bernoulli]
ode:=x*diff(y(x),x)+y(x) = x^2*(exp(x)+1)*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]+y[x]==x^2*(1+exp[x])*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(exp(x) + 1)*y(x)**2 + x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)