32.6.7 problem Exercise 12.7, page 103

Internal problem ID [5872]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.7, page 103
Date solved : Sunday, March 30, 2025 at 10:21:32 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }-y&=\sqrt {x^{2}+y^{2}} \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 26
ode:=-y(x)+x*diff(y(x),x) = (x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-c_1 \,x^{2}+\sqrt {x^{2}+y^{2}}+y}{x^{2}} = 0 \]
Mathematica. Time used: 0.312 (sec). Leaf size: 13
ode=x*D[y[x],x]-y[x]==Sqrt[x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \sinh (\log (x)+c_1) \]
Sympy. Time used: 1.120 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x \sinh {\left (C_{1} - \log {\left (x \right )} \right )} \]