Internal
problem
ID
[5835]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.16,
page
90
Date
solved
:
Sunday, March 30, 2025 at 10:19:07 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=3*(x+y(x))^2+x*(3*y(x)+2*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*(y[x]+x)^2)+(x*(3*y[x]+2*x))*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x + 3*y(x))*Derivative(y(x), x) + 3*(x + y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)