32.4.22 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.14, page 90

Internal problem ID [5833]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number : Recognizable Exact Differential equations. Integrating factors. Exercise 10.14, page 90
Date solved : Sunday, March 30, 2025 at 10:19:04 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 385
ode:=y(x)*(2*x-y(x)-1)+x*(2*y(x)-x-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 \,5^{{1}/{3}} {\left (x \left (\sqrt {5}\, \sqrt {\frac {80 c_1 \,x^{2}+160 c_1 x +80 c_1 -x}{c_1}}-20 x -20\right ) c_1^{2}\right )}^{{1}/{3}}}{40 c_1}+\frac {3 x 5^{{2}/{3}}}{40 {\left (x \left (\sqrt {5}\, \sqrt {\frac {80 c_1 \,x^{2}+160 c_1 x +80 c_1 -x}{c_1}}-20 x -20\right ) c_1^{2}\right )}^{{1}/{3}}}-x -1 \\ y &= \frac {\frac {3 \left (-i \sqrt {3}-1\right ) 5^{{1}/{3}} \left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{2}/{3}}}{80}+\frac {3 \left (-\frac {80 \left (x +1\right ) \left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{1}/{3}}}{3}+\left (i \sqrt {3}-1\right ) x 5^{{2}/{3}}\right ) c_1}{80}}{\left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{1}/{3}} c_1} \\ y &= \frac {\frac {3 \left (i \sqrt {3}-1\right ) 5^{{1}/{3}} \left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{2}/{3}}}{80}+\frac {3 \left (-\frac {80 \left (x +1\right ) \left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{1}/{3}}}{3}+\left (-i \sqrt {3}-1\right ) x 5^{{2}/{3}}\right ) c_1}{80}}{\left (-20 c_1^{2} x \left (-\frac {\sqrt {5}\, \sqrt {\frac {80 \left (x +1\right )^{2} c_1 -x}{c_1}}}{20}+x +1\right )\right )^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 37.9 (sec). Leaf size: 471
ode=(y[x]*(2*x-y[x]-1))+(x*(2*y[x]-x-1))*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [3]{2} x}{\sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}-\frac {\sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{3 \sqrt [3]{2} c_1}-x-1 \\ y(x)\to \frac {\left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{6 \sqrt [3]{2} c_1}-x-1 \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{6 \sqrt [3]{2} c_1}-x-1 \\ y(x)\to \text {Indeterminate} \\ y(x)\to -x-1 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(-x + 2*y(x) - 1)*Derivative(y(x), x) + (2*x - y(x) - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out