Internal
problem
ID
[5819]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Example
10.83,
page
90
Date
solved
:
Sunday, March 30, 2025 at 10:18:42 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=y(x)*(2*x^2*y(x)^3+3)+x*(x^2*y(x)^3-1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]*(2*x^2*y[x]^3+3))+(x*(x^2*y[x]^3-1))*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2*y(x)**3 - 1)*Derivative(y(x), x) + (2*x**2*y(x)**3 + 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)