Internal
problem
ID
[5816]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Example
10.741,
page
90
Date
solved
:
Sunday, March 30, 2025 at 10:18:38 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class C`]]
ode:=y(x)^3+x*y(x)^2+y(x)+(x^3+x^2*y(x)+x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^3+x*y[x]^2+y[x])+(x^3+x^2*y[x]+x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (x**3 + x**2*y(x) + x)*Derivative(y(x), x) + y(x)**3 + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out