Internal
problem
ID
[5811]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
9
Problem
number
:
Exact
Differential
equations.
Exercise
9.17,
page
79
Date
solved
:
Sunday, March 30, 2025 at 10:18:32 AM
CAS
classification
:
[_exact]
With initial conditions
ode:=y(x)^2*exp(x*y(x)^2)+4*x^3+(2*x*y(x)*exp(x*y(x)^2)-3*y(x)^2)*diff(y(x),x) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(y[x]^2*Exp[x*y[x]^2]+4*x^3)+(2*x*y[x]*Exp[x*y[x]^2]-3*y[x]^2)*D[y[x],x]==0; ic=y[1]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**3 + (2*x*y(x)*exp(x*y(x)**2) - 3*y(x)**2)*Derivative(y(x), x) + y(x)**2*exp(x*y(x)**2),0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)
Timed Out