Internal
problem
ID
[5807]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
9
Problem
number
:
Exact
Differential
equations.
Exercise
9.12,
page
79
Date
solved
:
Sunday, March 30, 2025 at 10:18:26 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _dAlembert]
ode:=x*(x^2+y(x)^2)^(1/2)-x^2*y(x)/(y(x)-(x^2+y(x)^2)^(1/2))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*Sqrt[x^2+y[x]^2]-(x^2*y[x])/(y[x]- Sqrt[x^2+y[x]^2])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x)*Derivative(y(x), x)/(-sqrt(x**2 + y(x)**2) + y(x)) + x*sqrt(x**2 + y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out