32.3.1 problem Exact Differential equations. Exercise 9.4, page 79

Internal problem ID [5799]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 9
Problem number : Exact Differential equations. Exercise 9.4, page 79
Date solved : Sunday, March 30, 2025 at 10:18:14 AM
CAS classification : [_exact, _rational]

\begin{align*} 3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 471
ode:=3*x^2*y(x)+8*x*y(x)^2+(x^3+8*x^2*y(x)+12*y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}}{6}+\frac {x^{3} \left (-3+4 x \right )}{6 \left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}}-\frac {x^{2}}{3} \\ y &= \frac {\frac {\left (-i \sqrt {3}-1\right ) \left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{2}/{3}}}{4}+x^{2} \left (-\left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}+\left (i \sqrt {3}-1\right ) \left (-\frac {3}{4}+x \right ) x \right )}{3 \left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}} \\ y &= -\frac {\left (-\frac {i \sqrt {3}}{4}+\frac {1}{4}\right ) \left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{2}/{3}}+x^{2} \left (\left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}+\left (-\frac {3}{4}+x \right ) x \left (1+i \sqrt {3}\right )\right )}{3 \left (9 x^{5}-27 c_1 -8 x^{6}+3 \sqrt {-3 x^{10}+3 x^{9}+48 c_1 \,x^{6}-54 c_1 \,x^{5}+81 c_1^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 2.066 (sec). Leaf size: 474
ode=(3*x^2*y[x]+8*x*y[x]^2)+(x^3+8*x^2*y[x]+12*y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (-2 x^2+\sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}+\frac {(4 x-3) x^3}{\sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}}\right ) \\ y(x)\to \frac {1}{48} \left (-16 x^2+4 i \left (\sqrt {3}+i\right ) \sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}-\frac {4 i \left (\sqrt {3}-i\right ) (4 x-3) x^3}{\sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}}\right ) \\ y(x)\to \frac {1}{48} \left (-16 x^2-4 \left (1+i \sqrt {3}\right ) \sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}+\frac {4 i \left (\sqrt {3}+i\right ) (4 x-3) x^3}{\sqrt [3]{-8 x^6+9 x^5+3 \sqrt {3} \sqrt {-x^{10}+x^9-16 c_1 x^6+18 c_1 x^5+27 c_1{}^2}+27 c_1}}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2*y(x) + 8*x*y(x)**2 + (x**3 + 8*x**2*y(x) + 12*y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out