32.2.13 problem Differential equations with Linear Coefficients. Exercise 8.13, page 69

Internal problem ID [5797]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number : Differential equations with Linear Coefficients. Exercise 8.13, page 69
Date solved : Sunday, March 30, 2025 at 10:18:03 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y+7+\left (2 x +y+3\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.273 (sec). Leaf size: 87
ode:=y(x)+7+(2*x+y(x)+3)*diff(y(x),x) = 0; 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \left (-x^{3}+6 x^{2}-12 x +72+8 \sqrt {-2 x^{3}+12 x^{2}-24 x +80}\right )^{{1}/{3}}+\frac {\left (x -2\right )^{2}}{\left (-x^{3}+6 x^{2}-12 x +72+8 \sqrt {-2 x^{3}+12 x^{2}-24 x +80}\right )^{{1}/{3}}}-x -5 \]
Mathematica. Time used: 6.801 (sec). Leaf size: 198
ode=(y[x]+7)+(2*x+y[x]+3)*D[y[x],x]==0; 
ic=y[0]==1; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2-\left (\sqrt [3]{-x^3+6 x^2+8 \sqrt {2} \sqrt {-x^3+6 x^2-12 x+40}-12 x+72}+4\right ) x+\left (-x^3+6 x^2+8 \sqrt {2} \sqrt {-x^3+6 x^2-12 x+40}-12 x+72\right )^{2/3}-5 \sqrt [3]{-x^3+6 x^2+8 \sqrt {2} \sqrt {-x^3+6 x^2-12 x+40}-12 x+72}+4}{\sqrt [3]{-x^3+6 x^2+8 \sqrt {2} \sqrt {-x^3+6 x^2-12 x+40}-12 x+72}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x + y(x) + 3)*Derivative(y(x), x) + y(x) + 7,0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out