Internal
problem
ID
[5749]
Book
:
Differential
Equations,
By
George
Boole
F.R.S.
1865
Section
:
Chapter
6
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 10:07:29 AM
CAS
classification
:
[_separable]
ode:=(f*x^4+c*x^3+c*x^2+b*x+a)^(1/2)/(a+b*y(x)+c*y(x)^2+c*y(x)^3+f*y(x)^4)^(1/2)*diff(y(x),x) = -1; dsolve(ode,y(x), singsol=all);
ode=Sqrt[a+b*x+c*x^2+c*x^3+f*x^4]/Sqrt[a+b*y[x]+c*y[x]^2+c*y[x]^3+f*y[x]^4]*D[y[x],x]==-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") f = symbols("f") y = Function("y") ode = Eq(sqrt(a + b*x + c*x**3 + c*x**2 + f*x**4)*Derivative(y(x), x)/sqrt(a + b*y(x) + c*y(x)**3 + c*y(x)**2 + f*y(x)**4) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)