31.3.7 problem 5.4

Internal problem ID [5737]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 4
Problem number : 5.4
Date solved : Sunday, March 30, 2025 at 10:07:07 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.139 (sec). Leaf size: 18
ode:=(x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x)+(x*cos(y(x)/x)-y(x)*sin(y(x)/x))*x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \operatorname {RootOf}\left (\textit {\_Z} \cos \left (\textit {\_Z} \right ) x^{2}-c_1 \right ) \]
Mathematica. Time used: 0.341 (sec). Leaf size: 31
ode=(x*Cos[y[x]/x]+y[x]*Sin[y[x]/x])*y[x]+(x*Cos[y[x]/x]-y[x]*Sin[y[x]/x])*x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\log \left (\frac {y(x)}{x}\right )-\log \left (\cos \left (\frac {y(x)}{x}\right )\right )=2 \log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x*cos(y(x)/x) - y(x)*sin(y(x)/x))*Derivative(y(x), x) + (x*cos(y(x)/x) + y(x)*sin(y(x)/x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out