31.2.1 problem 1

Internal problem ID [5722]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 3
Problem number : 1
Date solved : Sunday, March 30, 2025 at 10:06:11 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.109 (sec). Leaf size: 119
ode:=x^3+3*x*y(x)^2+(y(x)^3+3*x^2*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= \frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 8.477 (sec). Leaf size: 245
ode=(x^3+3*x*y[x]^2)+(y[x]^3+3*x^2*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to -\sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ \end{align*}
Sympy. Time used: 4.186 (sec). Leaf size: 88
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + 3*x*y(x)**2 + (3*x**2*y(x) + y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = - \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}\right ] \]