31.1.12 problem 4.1

Internal problem ID [5710]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 4.1
Date solved : Sunday, March 30, 2025 at 10:05:30 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 2 x -y+1+\left (2 y-1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.126 (sec). Leaf size: 67
ode:=2*x-y(x)+1+(2*y(x)-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {15}\, \tan \left (\operatorname {RootOf}\left (\sqrt {15}\, \ln \left (\left (1+4 x \right )^{2} \sec \left (\textit {\_Z} \right )^{2}\right )+\sqrt {15}\, \ln \left (5\right )-3 \sqrt {15}\, \ln \left (2\right )+\sqrt {15}\, \ln \left (3\right )+2 \sqrt {15}\, c_1 -2 \textit {\_Z} \right )\right ) \left (-1-4 x \right )}{16}+\frac {x}{4}+\frac {9}{16} \]
Mathematica. Time used: 0.13 (sec). Leaf size: 85
ode=(2*x-y[x]+1)+(2*y[x]-1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \sqrt {15} \arctan \left (\frac {-2 y(x)+8 x+3}{\sqrt {15} (2 y(x)-1)}\right )=15 \left (\log \left (\frac {2 \left (8 x^2+8 y(x)^2-(4 x+9) y(x)+6 x+3\right )}{(4 x+1)^2}\right )+2 \log (4 x+1)+8 c_1\right ),y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x + (2*y(x) - 1)*Derivative(y(x), x) - y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out